Multimodal functional imaging of motor imagery using a novel paradigm
نویسندگان
چکیده
Neuroimaging studies have shown that the neural mechanisms of motor imagery (MI) overlap substantially with the mechanisms of motor execution (ME). Surprisingly, however, the role of several regions of the motor circuitry in MI remains controversial, a variability that may be due to differences in neuroimaging techniques, MI training, instruction types, or tasks used to evoke MI. The objectives of this study were twofold: (i) to design a novel task that reliably invokes MI, provides a reliable behavioral measure of MI performance, and is transferable across imaging modalities; and (ii) to measure the common and differential activations for MI and ME with functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG). We present a task in which it is difficult to give accurate responses without the use of either motor execution or motor imagery. The behavioral results demonstrate that participants performed similarly on the task when they imagined vs. executed movements and this performance did not change over time. The fMRI results show a spatial overlap of MI and ME in a number of motor and premotor areas, sensory cortices, cerebellum, inferior frontal gyrus, and ventrolateral thalamus. MI uniquely engaged bilateral occipital areas, left parahippocampus, and other temporal and frontal areas, whereas ME yielded unique activity in motor and sensory areas, cerebellum, precuneus, and putamen. The MEG results show a robust event-related beta band desynchronization in the proximity of primary motor and premotor cortices during both ME and MI. Together, these results further elucidate the neural circuitry of MI and show that our task robustly and reliably invokes motor imagery, and thus may prove useful for interrogating the functional status of the motor circuitry in patients with motor disorders.
منابع مشابه
Enhanced performance by a hybrid NIRS–EEG brain computer interface
Noninvasive Brain Computer Interfaces (BCI) have been promoted to be used for neuroprosthetics. However, reports on applications with electroencephalography (EEG) show a demand for a better accuracy and stability. Here we investigate whether near-infrared spectroscopy (NIRS) can be used to enhance the EEG approach. In our study both methods were applied simultaneously in a real-time Sensory Mot...
متن کاملAdaptive Motor Imagery: A Multimodal Study of Immobilization-Induced Brain Plasticity.
The consequences of losing the ability to move a limb are traumatic. One approach that examines the impact of pathological limb nonuse on the brain involves temporary immobilization of a healthy limb. Here, we investigated immobilization-induced plasticity in the motor imagery (MI) circuitry during hand immobilization. We assessed these changes with a multimodal paradigm, using functional magne...
متن کاملThe Effect of Motor imagery practice after the session training on motor memory consolidation in elderly
Introduction The purpose of the present study was to assess the effect of motor imagery training after exercise on motor memory consolidation in the elderly. Materials and Methods The statistical population of the study consisted of healthy men and women in Mashhad nursing homes 22 persons were randomly assigned to 2 groups: motor imagery and control (each group included 11 participants). Int...
متن کاملMotor Imagery of Typical and High-Functioning Autism Spectrum Disorder Children: Developmental Changes
Introduction: There are significant interactions between motor and cognitive development through life span. Investigation of cognitive processes and behavioral infrastructure is very valuable, so the present study aimed to determine the developmental changes of motor imagery in typical and high functioning autism spectrum disorder children aged 8 to 12 years. Methods: The present study was a s...
متن کاملAutomated classification of fMRI data employing trial-based imagery tasks
Automated interpretation and classification of functional MRI (fMRI) data is an emerging research field that enables the characterization of underlying cognitive processes with minimal human intervention. In this work, we present a method for the automated classification of human thoughts reflected on a trial-based paradigm using fMRI with a significantly shortened data acquisition time (less t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- NeuroImage
دوره 71 شماره
صفحات -
تاریخ انتشار 2013